Particle Swarm Social Model for Group Social Learning in Adaptive Environment
نویسندگان
چکیده
This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as human communities.
منابع مشابه
Particle Swarm Based Collective Searching Model for Adaptive Environment
This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and...
متن کاملModeling the Collective Strategic Searching of Artificial Insurgent Groups: A Particle Swarm Approach
A swarm based social adaptive model is proposed to model multiple insurgent groups’ strategy searching in a dynamic changed environment. This report presents a pilot study on using the particle swarm modeling, a widely used non-linear optimal tool, to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social...
متن کاملParticle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation
To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used nonlinear optimal tool to model the emergence of insurgency campaign. The objective of this research is t...
متن کاملOptimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy
Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...
متن کاملAdaptive particularly tunable fuzzy particle swarm optimization algorithm
Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...
متن کامل